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Abstract. We consider theX X Z model in the infinite volume limit with spir%— guantum space

and higher spin auxiliary space. Using perturbation theory arguments, we relate the half infinite
transfer matrices of this class of model to cerIHj;(s/lE) intertwiners introduced by Nakayashiki.

We construct the monodromy matrices, and show that the one with spin-1 auxiliary space gives
rise to theL-operator.

1. Introduction

In this paper, we revisit thé]q(;l\g) symmetry of theXXZ Hamiltonian in the infinite
volume limit. We show that the monodromy matrix, in the sense used in the quantum
inverse scattering method, gives rise to theperator representing the level 0 action of

U, (sl2) on the physical space of states. In this construction, we take the auxiliary space

for the monodromy matrix to be the spintl) (sl) moduIeV{(z), i.e. the three-dimensional
evaluation module with spectral paramegerThe monodromy matrix acts on the quantum
spaceF, which is theN — oo limit of the N-fold tensor product of spir%—Uq’(s’l;) modules
v,

If we take the spin% module V;” as the auxiliary space, and consider the trace of the
monodromy matrix acting on a finite, say-fold, tensor product, we obtain the transfer
matrix T\" (¢) for the six-vertex model of siz&v. T,\”(¢) form a commuting family of
operators which contains th€XZ Hamiltonian. In general, for any positive integer,
one can define a family of operatoilsf,’”)(;) which commute Witthgl)(g) and among
themselves, by choosing the spih auxiliary spaceV;(m). However, these are not new

operators because the fusion relation expresses them as polynon’il}’gjl)s(m with suitably
shifted parameters. On the other hand, the components of the monodromy matrix, other
than its trace, do not commute among themselves and, in faat, = 1, they obey the
commutation relation of thé.-operator.

The situation is different in the infinite volume limit. This is because one must choose
appropriate boundary conditions in order to have a well-defined limit of the monodromy
matrix. For example, suppose we take the sbmuxiliary space. We restrict our discussion
to the massive case, i.e:1 < g < 0. The dominant Boltzmann weight in this regime is
the ¢ weight (in the usual terminology of the six-vertex model). Let us normalize it to be
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1. The weights: andb are then small. To have a non-zero contribution, we must take all
but a finite number of constituents of the monodromy matrix to be tiveight. Therefore,

the choice of the boundary condition in the quantum space uniquely fixes the choice in
the auxiliary space. In other words, the total spin of the auxiliary space at the boundaries
effectively changes to 0.

We denote the monodromy matrix in this sense, acting on the infinite tensor product,
by T®(¢), and call it the monodromy matrix in the infinite volume limit. THexZ
Hamiltonian is obtained from the first derivative 6fY(¢) at¢ = 1. In short, the transfer
matrix in the infinite volume limit is nothing but the monodromy matrix with the s%)in-
auxiliary space.

In general, the effective total spin of the monodromy matrix at the boundaries is equal
to (n — 1)/2 if we take the auxiliary space to b@é”). We denote this operator by

matrix T (¢) can be interpreted as the-operator.

The physical space of states for tieXZ model consists of the vacuum vectors and
the multi-particle states. Particles have séin-Namer, they transform according to the
two-dimensional evaluation representation(gf@\z) and constitute a space of states which
is isomorphic to the tensor product M;,_l) i =1,...,m). This is called the particle
picture of the space of states. The action of the transfer matfix¢) is diagonalized in
the particle picture. It is 2-fold degenerate on each-particle spaceV,’ ® --- ® V"
with a given set of spectral parametéts, . .., &,}. In order to resolve this degeneracy, we
need theU(;(s/lE) symmetry. We calculate the action of the monodromy mafii () on

Vgll) R V;ml) explicitly. The result is essentially equal to the action of the monodromy
matrix of sizem with spin (n — 1)/2 auxiliary space.

Now, let us come to the representation theoretical content of the story. The two key
observations in the series of works [1-6] on %i& Z model are that the half infinite tensor
product of V® can be identified with the level 1 integrable highest weight representations
H = V(Ag) ® V(A of U,(sl), and that the half infinite transfer matrix acting on it is
identified with an intertwiner called the type-I vertex operator. The space of states is given
asF = H ® H*. This is called the local picture of the space of states. In [7], a new class
of intertwiners is introduced, which generalizes the type-l vertex operator. For each integer
n > 0, we consider Nakayashiki's intertwiner

SNV ® V(A = V(ML) ® V.

We show (up to a few orders i) that the infinite volume limit of the half transfer matrix
with auxiliary spacev,"*" is identified with®® (¢) for n = 0, 1, and conjecture that this
statement is valid to all orders for all. From this follows the representation theoretical
definition of the monodromy matrig "+ (z) (see (2.10)). We then compute the action of
T™(¢) on the space of states in the particle picture, and thereby derive the commutation
relations of7 ™ (¢). Finally, we derive the fusion relation which expres$&8(¢) in terms

of T@(¢) and TV (¢) with suitably shifted parameters.

2. Half transfer matrices

Consider the six-vertex model specified by the following Boltzmann weights:

500 R ,
t1-4q?

~ 11
a=Rkog=1~r1 =
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q(1-1¢%
{(1—q?)’
¢=Rig=Ryl=1
We restrict our consideration to the parameter regidn< ¢ < 0 and 1< ¢ < —¢ 1. The

R-matrix R = (Rl,flljl,z) acts on the tensor produ€® ® C?. Following the terminology of

the quantum inverse scattering method, we call the first component of the tensor product
the auxiliary space, and the second component the quantum space. The monodromy matrix
Tyl (I,1' = 0, 1) is an operator acting on thg-fold tensor product of the quantum space
C? = Cu’ ® Culd:

(1) 1 pl1.k1 l Ky (1) (1)
T, (” ®k1)_ Z lel lle QU

.....

r 0,1 »10
b=RS}=RyS =

In this section, we use a smajl expansion to compare th¥ — oo limit of the
monodromy matrix of sizeV with the level 1 intertwiners. We take the limit keeping the
spin variable at one end fixed and changing the one at the other end according to the choice
of boundary condition. This limit gives the action of the half transfer matrix in the infinite
volume limit.

2.1. The half infinite tensor product

We make the identification of the half infinite tensor productyim, (C?)®" with the level 1
U, (slo) moduleH = V (Ag)®V (Ay) in the way discussed in [1, 2, 5]. Foe= 0, 1, consider
the set of path$® consisting of sequences of D, denoted by p)) = {p(j)};>1, which
satisfy the boundary conditiop(j) = (1 — (—1)"*/)/2 for sufficiently largej. Consider
the vector spacé(”’ spanned by the formal expressions,.« c(p)|p)q), wherec(p) is a
formal power series ig. The statement (though not a mathematical theorem) is that there
is an embedding of the irreducible highest weight modulé(4;) into H® such that the
action of U, (sl) on V(A;) is induced by the formal action clV;(slz) on the half infinite
tensor product given by the coproduct (3.1).

For example, the path expansion of the highest weight vedtgr reads

k(M) =--—q ) - (Z...(g)...(g)...+22...(4)...>
—HIB(Z"'(Z)-FZZ“'(Z)(/C)—Z...(l)(Z)(l)...>+0(q4)' (2.1)

k=1

The notation is as follows. We call an alternating sequence, &f & maximal length a
domain. We decompose a path into domains. In the above formula, we den¢te ay
domain of lengthk. The symbol - -, when it is placed at the leftmost end, means an infinite
domain. Otherwise -- means a domain of undetermined length. The length of such a
domain can be any strictly positive integer. In addition, the length can be-0 i§ placed
at the rightmost end.

The path expansion of the vectors W(A;) are obtained by the 8> 1 symmetry. In
particular, the expansion a@f(|A1)) in the above notation is exactly the same as (2.1).

2.2. The perturbative action of the half transfer matrix

For eachN, we set
Py = (p)ay; p() = A= (=1)*)/21f j > N}.
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We denote bypy the projection ofH to the vector space spanned BY’. We define an
operator®, ; (¢) acting from oy (H®) to py(H") by

SOl = Y. > [ BRIV Coirhay  (22)

|]7’)(1—/')€,P1(\}7i) k1,....ky—1 1<GEN
where
k=01  ko=k  ky=3L—(=1itV)

Since¢ = 1, the matrix element of the half transfer matrix betwegh;, and |p’)1-:
is uniquely determined by the formula (2.2) by taking a sufficiently laxge If we take
|p") ) instead of p’) 1—;) in (2.2), the matrix element vanishes in the limit— co because
lal, |b| < 1. Note also that for givefp);) € P and|p’) € PA~, thek; (1< j < N—1)
are uniquely determined. Only one term in the second sum of (2.2) is non-vanishing.
Now, we apply formula (2.2) to a vector which belongsHé’. It is an infinite linear
combination of|p), and the coefficient ofp’) in the right-hand side must be summed up
with respect to thesgp). This sum diverges in the limi¥ — oco. To have a finite sum we
need to renormalize the Boltzmann weights. We use the normalization (3.5) Bfinetrix
such that the partition function is 1 (see [5]). The expansion of the weiglitsc reads as

a={1+4%@C -0+ 0@Y,
b=q¢ =) +q*C 2= ¢hH+ 0w, (2.3)
c=1+4*C? =D+ 0(¢".
We definedy x(¢) as in (2.2) but witha, b, ¢ replaced by, b, c.
Let ®,(¢) be the type-l vertex operator (see (3.6) and (3.7)). We conjecture

. 1
A!Enoo md)N,k(f) o pn ok =k o DP(L) (2.4)

whereu (¢, g) is a series iy with Laurent polynomials irt as coefficients.
Let us check (2.4) on the vectph):

lim Dy i(¢) o py ok (|Ag)) =k 0 Pr(£)(|Ao)). (2.5)
N—oo u(&, q)

We find
(@, q) =1+¢%¢ 2 -1+ 0(g"h.

First, we will check the coefficients of--, ---(2) and--- (2)(m) (m > 1) in (2.5) with
k = 1. The coefficients of these terms &y 1(¢) o py o k(| Ag)) are, moduloO (%),

N — (N - 1)qach72,
(—q + 2¢%)a*cN 2 + abe¥ 2 4+ (N — 3)¢%a®beV =% — (N — 3)qa®b?cV 4,
(—q + 2q3)a26N72 + 1+ Zqz)achf2 — qb2 + (N — 4)q2a3ch74 — (N — 4)qa2bch74,
respectively. Using (2.3) we obtain
Jim @y1(0)opy ok(ho) = A+4%¢ 2 =1+ 0*)
x(---+<—q 49 @+ (g +24%) Y - @)m) + -

m=>1

+§2q3...(2)_|_...>‘ (2.6)
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Note that

4.2
(0)|Ao) = |A1) ® ui” — gt falA1) @ uf’ + ququoflmn ®ui’ +---. (2.7)

Following the method in [1], we obtain
k(fofilA1) = (g T+ (D +---

Therefore, the result (2.6) is consistent with the conjecture.
Next we check the cage= 0 in (2.4) for the coefficient of- - (1). It is, moduloO(¢*),

b+ (=g 4 ¢dac" L+ (N — 2)¢2a?bcN 3 — (N — 2)gab®cV 3.
Using (2.3) we obtain
Jim @y o(6) o pyok(ho) = A+4°¢ > =D+ 0@N(—q(L g%z (D +--).
(2.8)
On the other hand, we have
k(filA) =L —g%) - D)+,

in (2.7). Therefore, the result (2.8) is consistent with the conjecture (2.4).

2.3. The case with spin-1 auxiliary space

Let us calculate similar quantities for the spin-1 auxiliary space. We take the weight vectors
u? (j = 0,1,2) of the three-dimensional; (siz) module V%’ as in (3.2). This is the
choice such that the matrix elements of the s@jn%) R-matrix are

S 00 s 1 1-4%2
00 _ 521 _ q°¢
A= o =la= e ia-gy
S s 5 1 qq—-1¢?

01 _ 7520 _
Fefor=fo= nipa-o
1 qd—q2®

J1+q2 ¢1—g?’
~ 52,0 50,1 510 pll
D= R1,1 = Rl,o = Ro,l = Rz,o =1
We set
q¢) ki p(j)
Y Olpiy = Y > T] R @ DI ami,

1Pty P I Kiverky-1 ISGEN

where

1=0,1, k=0,1,2, ko = k, ky =14 3(1— (=1 tN ),

Note thatD dominates the other weights. Therefore, if we chogsg, in P, we
must chooseép’)1_;) in PA-D_ This is the same as in the sp%nease. A new phenomenon
is that there are two choices of the valuekgfcorresponding té = 0, 1. In order to obtain
finite results we definebg\}?,.k(g) by using the normalization (3.5) for the-matrix. The
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overall normalization factor (corresponding to thé&;, ¢) in the case of the spié-auxiliary
space) now depends upon whetlélis odd or even. The conjecture is

lim oY (0)opyok =kodP (),
N=oo vy (. q) M h

N N
(. q)=1— (2 — [ZD a*+ 4%+ 0",
where we use Nakayashiki's operatbf® (¢) (see (3.8)) in the right-hand side. In the above
formula the symbol%’] means the integer part @ /2.

The following are the supporting calculations. Let us check the tasd, k = 2 on
the vector|Ag). We have

q>(1,lé(éh)|/\o) =|A1) +---.

The coefficients of - -, ---(2), ---(2)(m) (m > 2, even and---(2)(m) (m > 1, odd) in
CD%,)LZ(C) o py o k(]Ao)) are, moduloO (¢*),

N N-1
DN _ [2] gABDV 2 — [2] qC?DN 2 =y (L, q),

N
ABDV2 _4ACDN? - ([2} — 1) gA%B?DN % = (—q + ¢®wn (C, q),
N
—gBCDN"2 4 ABDV 2 —gqACDV 2 - ([2} - 1) qA?B?pDN*

= (=g + 2% (. q),
N
C?2DN"2 —gBCDN "2 + (=g +24°) DV —qACD"? + [2} q?ABDN~2

= (—q + 24> (¢, 9),
respectively. These are consistent with the conjecture.
Let us check the cage= 0, k = 1 on the vectoiAg). We have

q2

DG (0)|Ao) = (1 - 2) |Az)+ -
The perturbative calculation gives the coefficient. of in d)j\},)o’l(g) o pn o k(]Ag)) to be,

modulo O (¢%),
2

DY — [Z] qC*DV72 — [1\/2—1} qABD" % = (1— qz) v (£, q).

This is consistent with the conjecture.

Based on the perturbative checks in this and the previous subsection, we conjecture
that the half transfer matrix with spi(n + 1)/2 auxiliary space is given by Nakayashiki’'s
operatord™ (¢). More specifically, we define the half transfer matrix with spirt- 1)/2

by
o0 Oo= > >[I R"™@ P a (2.9)

P eP ka1 NS
where 0< 7 < n, 0< k < n+1,ko =k, ky = [+3(1—(—DV+*+1), and whereR "*1D (¢) is
given in (3.5). Our conjecture is that I, . @Y, , (¢) o py ok is proportional taco () (¢),
WherecIDZ(f',f(;) is given by (3.8) and (3.10).
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2.4. The monodromy matrix in the infinite volume limit

Consider the monodromy matrix of size&v2

..... 1— ki,p(j
T @0t = > T R @,
kn-1,....k1-ny N<j<1-N
whereky = [+ (1 — (=N kv =1+ 1A - (DY, 0 < [, I’ < n and
2 2
p(j). P'(j) = 0,1. Using (2.9), and the symmetB+1(5)*h = RO+ ()=t
we can rewrite this as

n+1
(n+1) p(N),...p(1=N) __ (n) p),....p(N) (n) 1-p'(0),...,1-p'(1-N)
oniy G ey yaeny = Zq’m,k(f)pw ..... o) ® P w110, 1 pa—ny -
=0

This observation, together with the conjectural form ofJim, @), (¢), motivates us

to define the monodromy matrix in the infinite volume linilf, ™ (¢) € End’H ® H*), as

n+1

TG @) =™ ol @) @ ol Ly (), (2.10)
k=0

whereg™ is a constant which appears in the next section. This is a generalization of (7.8)
(the caser = 0) in [5].

3. Level-1 intertwiners

In this section, we discuss level-1 intertwiners of the algdbita= U, (;l\z) generated by
ei, fi,t; (i =0,1). Unless otherwise stated, all notational conventions are those of [5]. We
choose the coprodud to be

At))=1Qt, Ale)=¢ Q1+t ®e, Af)=f®T +18 f. (3.1)

We need two types o/’ modules for our analysis; level-1 highest-weight modules, and
level-zero evaluation modules. Level-1 highest-weight mode¢sa;) (j = 0,1) are
generated by the highest-weight vectgy, which obeyse;v,, = 0, fivs, = q%i vy, and

5,‘,_,‘+l _
fi UA/. =0.

3.1. Evaluation modules

We use a principally specialized evaluation modm@), with weight vectorSul("). The
action of U’ on V" is given by

Ful = e =0l = 62
) _ o1y () ) _ ppm, ™ =1 '
Jou; " =&77b, eouy " = &by Uy, 0=1

whereb™ = g"+2+D/2([1 4 1][n — 1])/2. In this basis we have an isomorphism

V_g1e = V2, ul(n) — u;”j,

where (u"*, u{") = 8.
We now consider the structure of tensor products of such modules. First we note that
V.Y ® V! has a one-dimensional’ submodule

1 1 1 1 1 1
M — V;§)®V§(), WhereMz(C(ué)@u(l)—u(1)®u(())).
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Letting N, = V(?l ® V(Pg ® -OM®---®VY, , whereM is the corresponding
q q2¢
submodule in the{j J+ 1) position, we have

n— 1

1 1 1

VL @V, ® VQH /
q2¢ q 7

n—

q92¢
7™ @ (€3] (1) (n) (n)
(w, uy,” @+~ @uy™) = YLy, Uyt

The U’ linear projectionr®™ : V¥ V(?;):g ® - ® V(l’ — V" is given by
s E

_1
wherey,"” = [1] 2.

On the other handV( ® V(?n R --® V(?l has aU’ sub-moduleV,”. The U’
Te“ q 7
linear embedding™ : V(”) N V(?n ® V(3 . ® ® V(" , is given by
7'

q92¢
(n) (n) (n) (n) u® ) )
@My = whereii| Z w, Quy,’ @ Qu;.
It =l
We construct certailR-matrices associated with our evaluation modules. Khmatrix
RO™ (/g0 v @ VW — v @ V™ is defined up to a normalization by the

requirement thaR ™™ (¢1/52) A(x) = A'(x)R™™(£1/82) on VIV @ V™. Here,x e U,
and A'(x) is defined in [5]. OV, ® V" @ V", we have the Yang-Baxter equation

R™P 52/ L) R™P (01/E2) R™™(41/52) = R™™(41/c) R (41/ ) R™ P (¢2/¢3).  (3.3)
We define components by

R(”'m)(Cl/Cz)ul(") @u" = Z ul’ ® u(m)R(" m)(§1/§2)1f Iz

and fix the normalization by requiring thait“”")(g)ojo = 1. The simplest way to obtain
R™D(z) is through the fusion technique. This gives
()
n, Yr TP TP
R™D (@)l = Zos > RqIFERCIER . RCaDE ., (B4)
VI Gt =1 ok

wherel; +---+1, =1, andR(¢) = R&V(¢). Explicitly, we have

. q (1_qn+l 2 2) . 1 a1 (1—6]2)4‘
R 1)@)10 = e R™V ()t o= (n -1l +1])2q" 1o gig
Other components are given by the symmetrigéd(0)") = R®D()I"¢17) =

R™D()%9. The otherR-matrix to which we shall refer later on i (¢). This is
given by RA" (£)%) = R™D(£)5%. Finally, we shall use the normalizeRtmatrices

R"Y(¢) = R™V () /™ (0), RV (@) = R* () /™ (), (3.5)
where
@72 4Mo0 (@ 7%
(@372 4D (@722 4N
With this factor, R”Y(¢) enjoys the properties of unitarity

1 1 —1\lo.k
Z R(n )(5)11 k1 (n )(C )lfz,kfz = 511,128k1,k2,
Uk

@ =¢

and crossing symmetrR™Y (—g 1), = R™D (Y.

n—I"k
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3.2. Elementary intertwiners

First, we recall the definition of the elementdry intertwiners
D) V(A) — V(A1) ® V7,
U (2) VP @ V(A — V(A1)

of [5,2]. Components are defined by

(3.6)

Q=Y v u,
§ IR (3.7)

W) ® v) = W (),

wherev € V(4;), and ®x(¢) and ¥} (¢) are both mapd/ (A;) — V(A1) ® C[¢, 1.
Note thatk = 0, 1 here corresponds o= +, — in [5]. These intertwiners are unique up
to a normalization, which is fixed by the requirements

(A1]®1(0)A0) = 1, (AolPo(¢)A1) =1,
(A1]¥5(0)]A0) = 1, (Aol¥i(0)|AL) =1
Here we use the bra—ket notation, identifying = |A;).

3.3. General intertwiners

The existence and uniquenessiofintertwiners of the form

") V" @ V(A) — V(A1) ® V"
was demonstrated in [7]. Our construction differs from that of [7] only in that we use the
principal evaluation representation. Following [7], we constr@é’v(;) in terms of the
intertwiner 0™ : VP @ - @ VP @ V(A) — V(A1) @ VI @ - @ V. defined by

0 = (1) PGV (D) - WUH (&),

f(n)

where

"/Sa 2; 4 o0
e S

T (q (;“b//Cb)z, 4o I (@ Ea/)% aM oo
o @ /8% qN oo ¢ @ Eal8)% gD

Here we adopt the convention thak {1,...,n} andb € {1, ..., n+1}. We defined™ (¢)
by

() =1®@a" o " @ Vs, (3.8)
wheresS is the one-dimensional submanifold in the parameter spa¢g, of, }:

S={ta=q "0 =q"F ).
As we show in the appendix, each component@f’ has poles atS. However, the
combination(1® 7 *+Y)0™ (™ @ 1) is free of poles orsS.
Let U/ (i =0, 1) be theU’ subalgebra generated by, f; andz;, and define

7 V(l) ® - ovh

Sl

(v V(l) ® - ® V;D

(n+1)
— v,
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to be the uniqud/; intertwiners normalized by
+1 1 1 +1
rri(" )(ué) Q- ®ué)) = ug’ ),
1 1
D =ul @ @uld.

In order to prove that™ (¢) defined by (3.8) is &/’ intertwiner, it is enough to show
that

dM(@) =A™ 0" ™ @ 1)ls. (3.9)

The restriction taS in (3.9) is regular, and so the right-hand side of (3.9) & antertwiner.
In the appendix, we show that if we divide the restrictionStanto the two steps

Step L&, =gz 0 (L<a<n),
Step 2:¢, = ¢"% ’¢ 1<b<n+1,

then each component @™ is regular. The coefficients of the components in the linear

combinations (3.9) (for both = 0 andi = 1) and (3.8) coincide o5. ®™(¢) is therefore

an intertwiner for bothU; andU;. This is a simple proof tha®™ (¢) is aU’ intertwiner.
Define components by

n+1
M@ " ®v) =Y (@) @ultY). (3.10)
k=0

The normalization of (3.8) is such that
(ALY ()] Ao) = 1, (Aol @F(0)AL) = 1.

The intertwiner ®™(¢) has the following properties, analogous to those of the
elementary intertwinet (¢) given in [5] (indeed we can identifgp (¢) = ®©(¢)):

g" kiz GRS LI (S A (3.12)
; R_(l’””)(c/é)f;’,’/i@z’(s“)@z(f,)k/ (&) = O (&) D1, (), (3.12)
;‘l’k EP) (OR™V (£ /6))% = @) ()W} (). (3.13)
ELDq’z(fQ(C)ED = @) /8), (3.14)

where

n) _ (612””; 614)00

@M g
In (3.14), D is the principal grading, which acts dn(A;) as
D(fhfiz s fiNvA,) = N(filfiz s fiNUAj)'

Relation (3.14) is a simple consequence of the analogous proper®y(forand¥*(¢) (see
[5]). Properties (3.11)—(3.13) can be derived by slightly modifying the proof of theorem 5
in [7]. We give a proof only of (3.11).

We use the following intertwiner:

8

p (1) .y @ @ @
Rt VP @0V > vP . @V,

()

_ (3.15)
Ry ) @ @ui) =u’ @ - @ uf,
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and abbreviateR™*V(¢q, ..., ¢41) t0 Ry, and R™ (&, ..., &,) to Re. We denote the

restriction to{¢, = q"%z*bg} by |, and{&, = q’%”{} by |:. We write the duality map
as

cw:vh, eV >,
C™u @ul”) = 1.

Then we have

(C(l))n+l(1® R = c@+D (n(n+1) ® 71("+1)), (3.16)
COY (™ g Ret™)|e = C™. (3.17)
The following properties of elementary intertwiners are also known [5]:
g9cPo(—¢Ine@) =1d, (3.18)
M- g7/ e ) = g0 C. (3.19)

The proof of (3.11) proceeds as follows: In the notation of the appendix, the essential
part of the left-hand side of (3.11) is

(P PELIVED - W E) x (PE) .- PErDP @) . W E)) . (320)

To get (3.11) we compose this with”+D (7 *+D @ 7 #+Dy and(™ ® (), and then restrict
itto S and{g, = ¢~ "2 t9¢'; ) = ¢"¥ ¢, and finally to¢” = —g~1¢. Let us denote this
restriction by|restice Consider the product of operators
D(g1) .. Py DWYHED - YHEDDP(D) - PG ) V(D) - PH ()
=0(g) ... P PP - PEur) VH(EY - UHENDYH(ED L. U (E).
(3.21)

The two expressions (3.20) and (3.21) are equal up to a factor which is regular when we
restrict in the way explained above. Therefore, we can manipulate

C(n+l) (T[(ﬂ+1) ® n(i’H*l))
XD ... P )P - PG WH(ED . WHEN Y () L W ()
X (l(n) by l(n))|restrict

instead of the expression containing (3.20). Using (3.15) and (3.16), we reduce this
expression to

€YD ... @€ )P EGrs) - .. PEDWHED ... UHEDY*(E,) ... U (E1)
X (L(n) ® Rél(n)) |restrict

Removing the bar, using (3.18), (3.19) and (3.17), and calculating the restriction of the
contraction terms, we arrive at (3.11).

4. The monodromy matrices

In section 2, the results of perturbation theory and other considerations led us to define
the monodromy matrix ag ;™" () = ¢ Y5 0 (©) ® ® 1 «(0). In section 3,

following Nakayashiki, we defined™ (¢) and presented its properties (3.11)—(3.14). We
now use these results in order to derive certain propertie&’6f? (¢).
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4.1. Action onF

One can viewF = H ® H* as a linear map or{ via the canonical identification
H* ® H ~ End(H). Then the action of,,"”(¢) on f € End(H) is given by

n+1
1
L5 f =8" Y @@ 0 fo @, i (0.
k=0

As an element of En@{), the vacuum in theéth sector was identified in [5] as
lvac)p = x 2 ()" P?,
where P®) is the projectof{ — V(A;), andx = 1/(¢%; ¢*)« is the principally specialized
character ofV(A;). The superscript on the grading serves only to indicate on which
spaceV (A;) it acts (we suppress the appearance of the projector from now on).
The action of7,} " (¢) is given by

n+1
1 _1 g (@)
T5 0 (@)lvac) sy = x 728" D OO (=) DY, 1 (O,
k=0

n+1
_1 1-i) _
=x 2= g™ @ (gD, 1 ().
k=0

_1 pa-i
=&rx 2(—q) = 4, r|vac)a—p-
Here we have used properties (3.14) and (3.11).
The Hamiltonian of theXXZ model is given by

_(1_512) d @
> f&T (=1

Excited states are given by

—m 7,1 r
610+ Emdenemy = (8O P TWE () .. W (ED(—)P”

with |&;| = 1 (see [5]). Using the commutation relation (3.13), it is easy to show that the

action of 7,7 (¢) on the m-particle stateléy, ..., £u)e,....:) IS given by

1
TP Ol - Endeseno = D RV @ /€0

{ef.1i}

, In—1.€m
xRV /8210 E o ROV /5 €L - e (4.1)
Here the sum is ovety, ..., ¢, andly, ..., l,—1. If we represent th&®-matrix graphically
as in [5], then this action has the following rather simple representation:
&1 & Em
{ é}_l 52 ‘ ‘ sm
! J/11¢12¢/ J/z¢ v
€ € En

This picture is related to the space of particles and not to the coordinate lattice.=F0r

we haveT(l)(§)|$1, ey ém)el ..... €n:(i) — T(é‘/%—l) cee T(C/‘i:m”%_l, B sm)el ..... € (1—i) as in [5],
where

(2% 445003 7% ¢M oo
(9272 4M00(q3C% g

(@) =¢"t
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4.2. Commutation relations

Making use of the explicit form of the action af given by (4.1), and the Yang—Baxter
equation (3.3), we can immediately write down the commutation relationshifﬂé?,ﬁt).

B (n,m) Iy,lp  (m+1) (n+1) _ (n+1) (m+1) 5 (n,m) Il
D RO @/ T @ T @ = Y T T T @R @/ w2y
l1,l> 11,05
[T™(¢1), TP ()] =0,

wheren, m > 1. Thus7,7(¢) can be interpreted as the-operator of the spir- XX Z
model in the infinite volume limit.

4.3. Fusion

If we rewrite each of theR”Y(¢) that occur on the right-hand side of (4.1) using the
fusion expression (3.4), then we obtain a fusion relation7ftirf-2 (¢) in terms of 7@ (¢)
andTW ().

Consider the operatoF which counts the number of particles in the particle picture.
Define

T OHTP ()™t if n=0mod 4
(n+1) H —
FouD ) = TU () ff n=1mod 4 4.2)
T DTV (0) if n=2mod 4
(=DF T+ (&) if n =3 mod 4.

n=2

We note that there is an equalifyf**?(z) = T+ () [T'Z5 TP (¢"z ~“¢). Then, we have
the following fusion relation:
(n)
~(n+1 YV 2 n=l. (2 n-3 2 1-n
o =" Y 1A T e ). T8 g,
VI gt =r

wheren > 1. Here, thel, are specified only by the requiremeiat+ --- + [, = [; the
formula is independent of the actual choicelpof

5. Discussion

In this paper, we have studied thIe](EE) symmetry of the spir%— XXZ model in the
massive regime by making use of Nakayashiki’s intertwiners. We have conjectured that in
the infinite volume limit the half transfer matrix with sphgquantum space and spiti{?)
auxiliary space is represented by the intertwiner

() V" ®V(A) = V(AL @ V). (5.1)

This implies, in particular, that the monodromy matrix with spin-1 auxiliary space enjoys
the commutation relations of the-operator.
In [7], Nakayashiki uses the operatd™ (¢) to diagonalize the spié—XXZ model

with higher spin impurities. In the language of the six-vertex model, this is equivalent to

inserting lines with higher spin. The difference between our approach and Nakayashiki's
is that we consider the monodromy matrices which are parallel to the inserted lines, while
Nakayashiki considers the transfer matrix which is perpendicular to them. In Nakayashiki's
case the spac&’;”) in (5.1) corresponds to the degeneracy of the vacuum states of the
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transfer matrix. In our case, we have found that the same space corresponds to the boundary
conditions for the monodromy matrices.

We have derived the fusion relation for the monodromy matrices. It almost corresponds
to the fusion construction of the spaiz’éf” in (5.1) out of the spaces with= 1. However,
we have found that the monodromy matrices contain the correction factor given in (4.2),
which is diagonal in each irreduciblke particle representation in the physical space of
states.
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Appendix. Regularity of matrix elements

In this appendix, we prove a few statements concerning the regularity of the matrix elements
of the product of type-l and type-Il vertex operators. We start from the bosonization of
vertex operators given on p 140 of [5]. Consider the product of vertex operators

0 = &8 ... P, GV (5D) ... V) (6p).

It contains integrals with respect to the variablgsin X~ (w;), for b such that; = 0, and
uz in X (uz), for a such that; = 0.

After normal ordering, the integrand, which depends on the variahles, w; andug,
consists of the following three parts:

(i) 04, the contraction terms, pairwise b @1, &1V, WP, or WS,

We have
(q be/é‘b»q )oo 3 l (%-a /Sav 4)00
0 = 2 —_ e 8- T
! ,,[,!f %) (q*2 /% %ﬂ( 06" (q%62/£2; %)

@52/55 a%oo

This is a function of;, &,. In the above setting, pairs of the fonin'®, do not appear
becauseb; is always in the left ofl;;

(ii) O2, the contraction terms for the rest of the pairs.

We have

[ [ ws — wp)(ws — ¢wy) H(Ma — ua)(ua — q uz)

b’ a<a

(wj — Clua)(wb g~ tuz )H(“a q Cb)l_[(wb q%€.)

1
Xl_[ i 21_[ _ 2521_[ Zsz)l_[ ,_q4§bZ'

aga a a<a Ug a h<h (wh Egh wj,

Xl_[( é_b)_,(qs/gb’ OO.
a,b
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(iii) O3, the rest, which is a normal-ordered product of vertex operators with coefficients
that are Laurent polynomials i), &,, w; andu;.

The contours for the integrals are such that ¢e?, quz, ¢ 'u; are inside, and the
q?¢? are outside of the contour for the; integration; theg?:? are inside, and thg*s2,
qwi, ¢ 1wy are outside of the contour for the integration.

Denote the quantity which i® with O, removed, byO. Note that because of the
commutation relation (A.3) of [5]d,, (¢,) commutes withdy (§,) inside of 0.

Now let us examine the regularity of the matrix element®ofit is enough to consider
the O, term in the integrand. The possible pinchings of the contours occur in the following
four cases (which we list with the relevant factors in the integrand):

Case 1.
1
2 _ —2g2 _
(uz — q*E2) (ug — g2€2) tés =q %7, fora; <a<ay,
a ay a a
Case 2.
1 -
2 _ 2,2
(0 — 2wy — i) S TG TS b by
1 2
Case 3.
( 24_2)(”)5 - qgfuz)( %2 at gbzl =q&2,forb <b,a<a,
Wp — g7 )Wy — qUa)Ua — 475,
Case 4.

ug — q3¢7
(ws — q2¢2) (wy — g~ ua) (ua — q2£2)
Cases 1 and 2 give rise to poles. They are, at most, simple because of the factor
[z (ma —ua) or [1;_; (w; — wj), respectively. Cases 3 and 4 are pole free because of
the factorw; — ¢3¢2 or uz; — ¢3¢2, respectively. The final remark is that the restriction of
0 atq¢f =2 foranyb is regular at2 = ¢~2¢2, and the restriction aj¢2, = &2 for any

a is regular atz?2 = ¢?¢2. This is because of the following factors in the numerator:
uz — ¢°6F = (ua — 4°62) + 4(€2, — agd)
ws — %62 = (wy — ¢*C2) + ¢°(q¢k — &D).

at¢f =q ' forb<bha<a

a’
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