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Abstract. We consider theXXZ model in the infinite volume limit with spin-12 quantum space
and higher spin auxiliary space. Using perturbation theory arguments, we relate the half infinite
transfer matrices of this class of model to certainUq(ŝl2) intertwiners introduced by Nakayashiki.
We construct the monodromy matrices, and show that the one with spin-1 auxiliary space gives
rise to theL-operator.

1. Introduction

In this paper, we revisit theUq(ŝl2) symmetry of theXXZ Hamiltonian in the infinite
volume limit. We show that the monodromy matrix, in the sense used in the quantum
inverse scattering method, gives rise to theL-operator representing the level 0 action of
U ′q(ŝl2) on the physical space of states. In this construction, we take the auxiliary space

for the monodromy matrix to be the spin-1U ′q(ŝl2) moduleV (2)ζ , i.e. the three-dimensional
evaluation module with spectral parameterζ . The monodromy matrix acts on the quantum
spaceF , which is theN →∞ limit of theN -fold tensor product of spin-1

2 U
′
q(ŝl2) modules

V (1).
If we take the spin-12 moduleV (1)ζ as the auxiliary space, and consider the trace of the

monodromy matrix acting on a finite, sayN -fold, tensor product, we obtain the transfer
matrix T (1)N (ζ ) for the six-vertex model of sizeN . T (1)N (ζ ) form a commuting family of
operators which contains theXXZ Hamiltonian. In general, for any positive integerm,
one can define a family of operatorsT (m)N (ζ ) which commute withT (1)N (ζ ) and among
themselves, by choosing the spinm2 auxiliary spaceV (m)ζ . However, these are not new

operators because the fusion relation expresses them as polynomials inT
(1)
N (ζ ) with suitably

shifted parameters. On the other hand, the components of the monodromy matrix, other
than its trace, do not commute among themselves and, in fact, ifm = 1, they obey the
commutation relation of theL-operator.

The situation is different in the infinite volume limit. This is because one must choose
appropriate boundary conditions in order to have a well-defined limit of the monodromy
matrix. For example, suppose we take the spin-1

2 auxiliary space. We restrict our discussion
to the massive case, i.e.−1 < q < 0. The dominant Boltzmann weight in this regime is
the c weight (in the usual terminology of the six-vertex model). Let us normalize it to be
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1. The weightsa andb are then small. To have a non-zero contribution, we must take all
but a finite number of constituents of the monodromy matrix to be thec weight. Therefore,
the choice of the boundary condition in the quantum space uniquely fixes the choice in
the auxiliary space. In other words, the total spin of the auxiliary space at the boundaries
effectively changes to 0.

We denote the monodromy matrix in this sense, acting on the infinite tensor product,
by T (1)(ζ ), and call it the monodromy matrix in the infinite volume limit. TheXXZ
Hamiltonian is obtained from the first derivative ofT (1)(ζ ) at ζ = 1. In short, the transfer
matrix in the infinite volume limit is nothing but the monodromy matrix with the spin-1

2
auxiliary space.

In general, the effective total spin of the monodromy matrix at the boundaries is equal
to (n − 1)/2 if we take the auxiliary space to beV (n)ζ . We denote this operator by

T (n)(ζ ) = (T (n)l,l′ (ζ ))l,l′=0,...,n−1. The main result of this paper is to show that the monodromy
matrix T (2)(ζ ) can be interpreted as theL-operator.

The physical space of states for theXXZ model consists of the vacuum vectors and
the multi-particle states. Particles have spin-1

2. Namely, they transform according to the
two-dimensional evaluation representation ofU ′q(ŝl2) and constitute a space of states which

is isomorphic to the tensor product ofV (1)ξi
(i = 1, . . . , m). This is called the particle

picture of the space of states. The action of the transfer matrixT (1)(ζ ) is diagonalized in
the particle picture. It is 2m-fold degenerate on eachm-particle spaceV (1)ξ1

⊗ · · · ⊗ V (1)ξm

with a given set of spectral parameters{ξ1, . . . , ξm}. In order to resolve this degeneracy, we
need theU ′q(ŝl2) symmetry. We calculate the action of the monodromy matrixT (n)(ζ ) on

V
(1)
ξ1
⊗ · · · ⊗ V (1)ξm

explicitly. The result is essentially equal to the action of the monodromy
matrix of sizem with spin (n− 1)/2 auxiliary space.

Now, let us come to the representation theoretical content of the story. The two key
observations in the series of works [1–6] on theXXZ model are that the half infinite tensor
product ofV (1) can be identified with the level 1 integrable highest weight representations
H = V (30) ⊕ V (31) of Uq(ŝl2), and that the half infinite transfer matrix acting on it is
identified with an intertwiner called the type-I vertex operator. The space of states is given
asF = H⊗H∗. This is called the local picture of the space of states. In [7], a new class
of intertwiners is introduced, which generalizes the type-I vertex operator. For each integer
n > 0, we consider Nakayashiki’s intertwiner

8(n)(ζ ) : V (n)ζ ⊗ V (3i)→ V (31−i )⊗ V (n+1)
ζ .

We show (up to a few orders inq) that the infinite volume limit of the half transfer matrix
with auxiliary spaceV (n+1)

ζ is identified with8(n)(ζ ) for n = 0, 1, and conjecture that this
statement is valid to all orders for alln. From this follows the representation theoretical
definition of the monodromy matrixT (n+1)(ζ ) (see (2.10)). We then compute the action of
T (n)(ζ ) on the space of states in the particle picture, and thereby derive the commutation
relations ofT (n)(ζ ). Finally, we derive the fusion relation which expressesT (n)(ζ ) in terms
of T (2)(ζ ) andT (1)(ζ ) with suitably shifted parameters.

2. Half transfer matrices

Consider the six-vertex model specified by the following Boltzmann weights:

ã = R̃0,0
0,0 = R̃1,1

1,1 =
1− q2ζ 2

ζ(1− q2)
,



Monodromy matrices 7511

b̃ = R̃0,1
0,1 = R̃1,0

1,0 =
q(1− ζ 2)

ζ(1− q2)
,

c̃ = R̃0,1
1,0 = R̃1,0

0,1 = 1.

We restrict our consideration to the parameter region−1< q < 0 and 1< ζ < −q−1. The

R-matrix R̃ = (R̃k′1,k′2k1,k2
) acts on the tensor productC2 ⊗ C2. Following the terminology of

the quantum inverse scattering method, we call the first component of the tensor product
the auxiliary space, and the second component the quantum space. The monodromy matrix
TN

l
l′ (l, l′ = 0, 1) is an operator acting on theN -fold tensor product of the quantum space

C2 = Cu(1)0 ⊕ Cu(1)1 :

TN
l
l′(u

(1)
kN
⊗ · · · ⊗ u(1)k1

) =
∑

k′1,...,k
′
N

l1,...,lN−1

R̃
l1,k1

l′,k′1
. . . R̃

l,kN
lN−1,k

′
N
u
(1)
k′N
⊗ · · · ⊗ u(1)

k′1
.

In this section, we use a smallq expansion to compare theN → ∞ limit of the
monodromy matrix of sizeN with the level 1 intertwiners. We take the limit keeping the
spin variable at one end fixed and changing the one at the other end according to the choice
of boundary condition. This limit gives the action of the half transfer matrix in the infinite
volume limit.

2.1. The half infinite tensor product

We make the identification of the half infinite tensor product limN→∞(C2)⊗N with the level 1
Uq(ŝl2) moduleH = V (30)⊕V (31) in the way discussed in [1, 2, 5]. Fori = 0, 1, consider
the set of pathsP (i) consisting of sequences of 0, 1, denoted by|p〉(i) = {p(j)}j>1, which
satisfy the boundary conditionp(j) = (1− (−1)i+j )/2 for sufficiently largej . Consider
the vector spaceH(i) spanned by the formal expressions

∑
p∈P (i) c(p)|p〉(i), wherec(p) is a

formal power series inq. The statement (though not a mathematical theorem) is that there
is an embeddingκ of the irreducible highest weight moduleV (3i) into H(i) such that the
action ofUq(ŝl2) on V (3i) is induced by the formal action ofU ′q(ŝl2) on the half infinite
tensor product given by the coproduct (3.1).

For example, the path expansion of the highest weight vector|30〉 reads

κ(|30〉) = · · · − q
∑
· · · (2) · · · + q2

(∑
· · · (2) · · · (2) · · · + 2

∑
· · · (4) · · ·

)
+q3

(∑
· · · (2)+ 2

∑
k>1

· · · (2)(k)−
∑
· · · (1)(2)(1) · · ·

)
+O(q4). (2.1)

The notation is as follows. We call an alternating sequence of 0, 1 of maximal length a
domain. We decompose a path into domains. In the above formula, we denote by(k) a
domain of lengthk. The symbol· · ·, when it is placed at the leftmost end, means an infinite
domain. Otherwise· · · means a domain of undetermined length. The length of such a
domain can be any strictly positive integer. In addition, the length can be 0 if· · · is placed
at the rightmost end.

The path expansion of the vectors inV (31) are obtained by the 0↔ 1 symmetry. In
particular, the expansion ofκ(|31〉) in the above notation is exactly the same as (2.1).

2.2. The perturbative action of the half transfer matrix

For eachN , we set

P (i)N = {|p〉(i);p(j) = (1− (−1)i+j )/2 if j > N}.



7512 T Miwa and R Weston

We denote byρN the projection ofH(i) to the vector space spanned byP (i)N . We define an
operator8̃N,k(ζ ) acting fromρN(H(i)) to ρN(H(1−i)) by

8̃N,k(ζ )|p〉(i) =
∑

|p′〉(1−i)∈P (1−i)N

∑
k1,...,kN−1

∏
16j6N

R̃
kj ,p(j)

kj−1,p′(j)(ζ, q)|p′〉(1−i) (2.2)

where

k = 0, 1 k0 = k kN = 1
2(1− (−1)i+N+1).

Since c̃ = 1, the matrix element of the half transfer matrix between|p〉(i) and |p′〉(1−i)
is uniquely determined by the formula (2.2) by taking a sufficiently largeN . If we take
|p′〉(i) instead of|p′〉(1−i) in (2.2), the matrix element vanishes in the limitN →∞ because
|a|, |b| < 1. Note also that for given|p〉(i) ∈ P (i) and|p′〉 ∈ P (1−i), thekj (16 j 6 N−1)
are uniquely determined. Only one term in the second sum of (2.2) is non-vanishing.

Now, we apply formula (2.2) to a vector which belongs toH(i). It is an infinite linear
combination of|p〉, and the coefficient of|p′〉 in the right-hand side must be summed up
with respect to these|p〉. This sum diverges in the limitN →∞. To have a finite sum we
need to renormalize the Boltzmann weights. We use the normalization (3.5) of theR-matrix
such that the partition function is 1 (see [5]). The expansion of the weightsa, b, c reads as

a = ζ−1+ q2(ζ−3− ζ )+O(q4),

b = q(ζ−1− ζ )+ q3(ζ−3− ζ−1)+O(q4),

c = 1+ q2(ζ−2− 1)+O(q4).

(2.3)

We define8N,k(ζ ) as in (2.2) but withã, b̃, c̃ replaced bya, b, c.
Let 8k(ζ ) be the type-I vertex operator (see (3.6) and (3.7)). We conjecture

lim
N→∞

1

µ(ζ, q)
8N,k(ζ ) ◦ ρN ◦ κ = κ ◦8k(ζ ) (2.4)

whereµ(ζ, q) is a series inq with Laurent polynomials inζ as coefficients.
Let us check (2.4) on the vector|30〉:

lim
N→∞

1

µ(ζ, q)
8N,k(ζ ) ◦ ρN ◦ κ(|30〉) = κ ◦8k(ζ )(|30〉). (2.5)

We find

µ(ζ, q) = 1+ q2(ζ−2− 1)+O(q4).

First, we will check the coefficients of· · ·, · · · (2) and · · · (2)(m) (m > 1) in (2.5) with
k = 1. The coefficients of these terms in8N,1(ζ ) ◦ ρN ◦ κ(|30〉) are, moduloO(q4),

cN − (N − 1)qabcN−2,

(−q + 2q3)a2cN−2+ abcN−2+ (N − 3)q2a3bcN−4− (N − 3)qa2b2cN−4,

(−q + 2q3)a2cN−2+ (1+ 2q2)abcN−2− qb2+ (N − 4)q2a3bcN−4− (N − 4)qa2b2cN−4,

respectively. Using (2.3) we obtain

lim
N→∞

8N,1(ζ ) ◦ ρN ◦ κ(|30〉) = (1+ q2(ζ−2− 1)+O(q4))

×
(
· · · + (−q + q3) · · · (2)+ (−q + 2q3)

∑
m>1

· · · (2)(m)+ · · ·

+ζ 2q3 · · · (2)+ · · ·
)
. (2.6)
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Note that

8(ζ)|30〉 = |31〉 ⊗ u(1)1 − qζf1|31〉 ⊗ u(1)0 +
q4ζ 2

1+ q2
f0f1|31〉 ⊗ u(1)1 + · · · . (2.7)

Following the method in [1], we obtain

κ(f0f1|31〉) = (q−1+ · · ·) · · · (2)+ · · · .
Therefore, the result (2.6) is consistent with the conjecture.

Next we check the casek = 0 in (2.4) for the coefficient of· · · (1). It is, moduloO(q4),

bcN−1+ (−q + q3)acN−1+ (N − 2)q2a2bcN−3− (N − 2)qab2cN−3.

Using (2.3) we obtain

lim
N→∞

8N,0(ζ ) ◦ ρN ◦ κ(|30〉) = (1+ q2(ζ−2− 1)+O(q4))(−q(1− q2)ζ · · · (1)+ · · ·).
(2.8)

On the other hand, we have

κ(f1|31〉) = (1− q2) · · · (1)+ · · · ,
in (2.7). Therefore, the result (2.8) is consistent with the conjecture (2.4).

2.3. The case with spin-1 auxiliary space

Let us calculate similar quantities for the spin-1 auxiliary space. We take the weight vectors
u
(2)
j (j = 0, 1, 2) of the three-dimensionalU ′q(ŝl2) moduleV (2)ζ as in (3.2). This is the

choice such that the matrix elements of the spin(1, 1
2) R-matrix are

Ã = R̃0,0
0,0 = R̃2,1

2,1 =
1√

1+ q2

1− q3ζ 2

ζ(1− q2)
,

B̃ = R̃0,1
0,1 = R̃2,0

2,0 =
1√

1+ q2

q(q − ζ 2)

ζ(1− q2)
,

C̃ = R̃1,0
1,0 = R̃1,1

1,1 =
1√

1+ q2

q(1− qζ 2)

ζ(1− q2)
,

D̃ = R̃2,0
1,1 = R̃0,1

1,0 = R̃1,0
0,1 = R̃1,1

2,0 = 1.

We set

8̃
(1)
N,l,k(ζ )|p〉(i) =

∑
|p′〉(1−i)∈P (1−i)N

∑
k1,...,kN−1

∏
16j6N

R̃
kj ,p(j)

kj−1,p′(j)(ζ, q)|p′〉(1−i),

where

l = 0, 1, k = 0, 1, 2, k0 = k, kN = l + 1
2(1− (−1)i+N+1).

Note thatD̃ dominates the other weights. Therefore, if we choose|p〉(i) in P (i), we
must choose|p′〉(1−i) in P (1−i). This is the same as in the spin-1

2 case. A new phenomenon
is that there are two choices of the value ofkN corresponding tol = 0, 1. In order to obtain
finite results we define8(1)

N,l,k(ζ ) by using the normalization (3.5) for theR-matrix. The
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overall normalization factor (corresponding to theµ(ζ, q) in the case of the spin-1
2 auxiliary

space) now depends upon whetherN is odd or even. The conjecture is

lim
N→∞

1

νN(ζ, q)
8
(1)
N,l,k(ζ ) ◦ ρN ◦ κ = κ ◦8(1)

l,k (ζ ),

νN(ζ, q) = 1−
(
N

2
−
[
N

2

])
q2+ q3ζ−2+O(q4),

where we use Nakayashiki’s operator8(1)(ζ ) (see (3.8)) in the right-hand side. In the above
formula the symbol [N2 ] means the integer part ofN/2.

The following are the supporting calculations. Let us check the casel = 1, k = 2 on
the vector|30〉. We have

8
(1)
1,2(ζ )|30〉 = |31〉 + · · · .

The coefficients of· · ·, · · · (2), · · · (2)(m) (m > 2, even) and · · · (2)(m) (m > 1, odd) in
8
(1)
N,1,2(ζ ) ◦ ρN ◦ κ(|30〉) are, moduloO(q4),

DN −
[
N

2

]
qABDN−2−

[
N − 1

2

]
qC2DN−2 ≡ νN(ζ, q),

ABDN−2− qACDN−2−
([
N

2

]
− 1

)
qA2B2DN−4 ≡ (−q + q3)νN(ζ, q),

−qBCDN−2+ ABDN−2− qACDN−2−
([
N

2

]
− 1

)
qA2B2DN−4

≡ (−q + 2q3)νN(ζ, q),

C2DN−2− qBCDN−2+ (−q + 2q3)DN − qACDN−2+
[
N

2

]
q2ABDN−2

≡ (−q + 2q3)νN(ζ, q),

respectively. These are consistent with the conjecture.
Let us check the casel = 0, k = 1 on the vector|30〉. We have

8
(1)
0,1(ζ )|30〉 =

(
1− q

2

2

)
|31〉 + · · · .

The perturbative calculation gives the coefficient of· · · in 8(1)
N,0,1(ζ ) ◦ ρN ◦ κ(|30〉) to be,

moduloO(q4),

DN −
[
N

2

]
qC2DN−2−

[
N − 1

2

]
qABDN−2 ≡

(
1− q

2

2

)
νN(ζ, q).

This is consistent with the conjecture.
Based on the perturbative checks in this and the previous subsection, we conjecture

that the half transfer matrix with spin(n+ 1)/2 auxiliary space is given by Nakayashiki’s
operator8(n)(ζ ). More specifically, we define the half transfer matrix with spin(n+ 1)/2
by

8
(n)
Nl,k(ζ )|p〉(i) =

∑
|p′〉(1−i)∈P (1−i)N

∑
k1,...,kN−1

∏
N6j61

R(n+1,1)(ζ )
kj ,p(j)

kj−1,p′(j)|p′〉(1−i), (2.9)

where 06 l 6 n, 06 k 6 n+1, k0 = k, kN = l+ 1
2(1−(−1)N+i+1), and whereR(n+1,1)(ζ ) is

given in (3.5). Our conjecture is that limN→∞8
(n)
Nl,k(ζ )◦ρN ◦κ is proportional toκ ◦8(n)

l,k (ζ ),

where8(n)
l,k (ζ ) is given by (3.8) and (3.10).
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2.4. The monodromy matrix in the infinite volume limit

Consider the monodromy matrix of size 2N ,

T
(n+1)

2Nl,l′ (ζ )
p(N),...,p(1−N)
p′(N),...,p′(1−N) =

∑
kN−1,...,k1−N

∏
N6j61−N

R(n+1,1)(ζ )
kj ,p(j)

kj−1,p′(j),

where kN = l + 1
2(1 − (−1)N+i+1), k−N = l′ + 1

2(1 − (−1)N+i+1), 0 6 l, l′ 6 n and

p(j), p′(j) = 0, 1. Using (2.9), and the symmetryR(n+1,1)(ζ )
a,b
c,d = R(n+1,1)(ζ )

n+1−c,1−d
n+1−a,1−b,

we can rewrite this as

T
(n+1)

2Nl,l′ (ζ )
p(N),...,p(1−N)
p′(N),...,p′(1−N) =

n+1∑
k=0

8
(n)
Nl,k(ζ )

p(1),...,p(N)
p′(1),...,p′(N) ⊗8(n)

Nn−l′,n+1−k(ζ )
1−p′(0),...,1−p′(1−N)
1−p(0),...,1−p(1−N) .

This observation, together with the conjectural form of limN→∞8
(n)
Nl,k(ζ ), motivates us

to define the monodromy matrix in the infinite volume limit,T (n+1)
l,l′ (ζ ) ∈ End(H⊗H∗), as

T
(n+1)
l,l′ (ζ ) = g(n)

n+1∑
k=0

8
(n)
l,k (ζ )⊗8(n)t

n−l′,n+1−k(ζ ), (2.10)

whereg(n) is a constant which appears in the next section. This is a generalization of (7.8)
(the casen = 0) in [5].

3. Level-1 intertwiners

In this section, we discuss level-1 intertwiners of the algebraU ′ = U ′q(ŝl2) generated by
ei, fi, ti (i = 0, 1). Unless otherwise stated, all notational conventions are those of [5]. We
choose the coproduct1 to be

1(ti) = ti ⊗ ti , 1(ei) = ei ⊗ 1+ ti ⊗ ei, 1(fi) = fi ⊗ t−1
i + 1⊗ fi. (3.1)

We need two types ofU ′ modules for our analysis; level-1 highest-weight modules, and
level-zero evaluation modules. Level-1 highest-weight modulesV (3j ) (j = 0, 1) are
generated by the highest-weight vectorv3j which obeyseiv3j = 0, tiv3j = qδi,j v3j and

f
δi,j+1
i v3j = 0.

3.1. Evaluation modules

We use a principally specialized evaluation moduleV (n)ζ , with weight vectorsu(n)l . The

action ofU ′ on V (n)ζ is given by

f1u
(n)
l = ζ−1b

(n)
l u

(n)

l+1, e1u
(n)
l = ζb(n)n−lu(n)l−1, t1u

(n)
l = qn−2lu

(n)
l ,

f0u
(n)
l = ζ−1b

(n)
n−lu

(n)

l−1, e0u
(n)
l = ζb(n)l u(n)l+1, t0 = t−1

1 ,
(3.2)

whereb(n)l = q(−n+2l+1)/2([l + 1][n− l])1/2. In this basis we have an isomorphism

V−q−1ζ → V ∗aζ , u
(n)
l 7→ u

(n)∗
n−l ,

where〈u(n)∗l , u
(n)
k 〉 = δlk.

We now consider the structure of tensor products of such modules. First we note that
V
(1)
qζ ⊗ V (1)ζ has a one-dimensionalU ′ submodule

M ↪→ V
(1)
qζ ⊗ V (1)ζ , whereM = C(u(1)0 ⊗ u(1)1 − u(1)1 ⊗ u(1)0 ).
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Letting Nj = V
(1)

q
n−1

2 ζ
⊗ V (1)

q
n−3

2 ζ
⊗ · · · ⊗M ⊗ · · · ⊗ V (1)

q
1−n

2 ζ
, whereM is the corresponding

submodule in the(j, j + 1) position, we have

V
(n)
ζ ' V (1)

q
n−1

2 ζ
⊗ V (1)

q
n−3

2 ζ
⊗ · · · ⊗ V (1)

q
1−n

2 ζ

/ n−1∑
j=1

Nj .

TheU ′ linear projectionπ(n) : V (1)
q
n−1

2 ζ
⊗ V (1)

q
n−3

2 ζ
⊗ · · · ⊗ V (1)

q
1−n

2 ζ
−→ V

(n)
ζ is given by

π(n)(u
(1)
l1
⊗ u(1)l2 ⊗ · · · ⊗ u

(1)
ln
) = γ (n)l1+···+lnu

(n)
l1+l2+···+ln ,

whereγ (n)l =
[
n

l

]− 1
2 .

On the other hand,V (1)
q

1−n
2 ζ
⊗ V (1)

q
3−n

2 ζ
⊗ · · · ⊗ V (1)

q
n−1

2 ζ
has aU ′ sub-moduleV (n)ζ . TheU ′

linear embeddingι(n) : V (n)ζ ↪→ V
(1)

q
1−n

2 ζ
⊗ V (1)

q
3−n

2 ζ
⊗ · · · ⊗ V (1)

q
n−1

2 ζ
is given by

ι(n)(u
(n)
l ) = γ (n)l ũ

(n)
l whereũ(n)l =

∑
l1+···+ln=l

u
(1)
l1
⊗ u(1)l2 ⊗ · · · ⊗ u

(1)
ln
.

We construct certainR-matrices associated with our evaluation modules. TheR-matrix
R̄(n,m)(ζ1/ζ2) : V (n)ζ1

⊗ V (m)ζ2
−→ V

(n)
ζ1
⊗ V (m)ζ2

is defined up to a normalization by the

requirement thatR̄(n,m)(ζ1/ζ2)1(x) = 1′(x)R̄(n,m)(ζ1/ζ2) on V (n)ζ1
⊗ V (m)ζ2

. Here,x ∈ U ′,
and1′(x) is defined in [5]. OnV (n)ζ1

⊗ V (m)ζ2
⊗ V (p)ζ3

, we have the Yang–Baxter equation

R̄(m,p)(ζ2/ζ3)R̄
(n,p)(ζ1/ζ3)R̄

(n,m)(ζ1/ζ2) = R̄(n,m)(ζ1/ζ2)R̄
(n,p)(ζ1/ζ3)R̄

(m,p)(ζ2/ζ3). (3.3)

We define components by

R̄(n,m)(ζ1/ζ2)u
(n)
l ⊗ u(m)k =

∑
l′,k′

u
(n)
l′ ⊗ u(m)k′ R̄

(n,m)(ζ1/ζ2)
l,k
l′,k′ ,

and fix the normalization by requiring that̄R(n,m)(ζ )0,00,0 = 1. The simplest way to obtain
R̄(n,1)(ζ ) is through the fusion technique. This gives

R̄(n,1)(ζ )
l,k
l′,k′ =

γ
(n)
l′

γ
(n)
l

∑
l′1+···+l′n=l′,k1,...,kn−1

R̄(ζq
n−1

2 )
l1,k1

l′1,k′
R̄(ζq

n−3
2 )

l2,k2

l′2,k1
. . . R̄(ζq

1−n
2 )

ln,k
l′n,kn−1

, (3.4)

wherel1+ · · · + ln = l, andR̄(ζ ) = R̄(1,1)(ζ ). Explicitly, we have

R̄(n,1)(ζ )
l,0
l,0 =

ql(1− qn+1−2lζ 2)

1− qn+1ζ 2
, R̄(n,1)(ζ )

l,1
l+1,0 = ([n− l][ l + 1])

1
2q

n−1
2
(1− q2)ζ

1− qn+1ζ 2
.

Other components are given by the symmetriesR̄(n,1)(ζ )a,bc,d = R̄(n,1)(ζ )
n−a,1−b
n−c,1−d =

R̄(n,1)(ζ )
c,d
a,b. The otherR-matrix to which we shall refer later on is̄R(1,n)(ζ ). This is

given by R̄(1,n)(ζ )a,bc,d = R̄(n,1)(ζ )b,ad,c. Finally, we shall use the normalizedR-matrices

R(n,1)(ζ ) = R̄(n,1)(ζ )/κ(n)(ζ ), R(1,n)(ζ ) = R̄(1,n)(ζ )/κ(n)(ζ ), (3.5)

where

κ(n)(ζ ) = ζ (q
3+nζ 2; q4)∞(q1+nζ−2; q4)∞

(q3+nζ−2; q4)∞(q1+nζ 2; q4)∞
.

With this factor,R(n,1)(ζ ) enjoys the properties of unitarity∑
l′,k′

R(n,1)(ζ )
l′,k′
l1,k1
R(n,1)(ζ−1)

l2,k2
l′,k′ = δl1,l2δk1,k2,

and crossing symmetryR(n,1)(−q−1ζ )
l′,k′
l,k = R(n,1)(ζ−1)

n−l,k′
n−l′,k.
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3.2. Elementary intertwiners

First, we recall the definition of the elementaryU ′ intertwiners

8(ζ) : V (3i) −→ V (31−i )⊗ V (1)ζ ,

9∗(ζ ) : V (1)ζ ⊗ V (3i) −→ V (31−i )
(3.6)

of [5, 2]. Components are defined by

8(ζ)v =
1∑
k=0

8k(ζ )v ⊗ u(1)k ,

9∗(ζ )(u(1)k ⊗ v) = 9∗k (ζ )v,
(3.7)

wherev ∈ V (3i), and8k(ζ ) and9∗k (ζ ) are both mapsV (3i) → V (31−i ) ⊗ C[ζ, ζ−1].
Note thatk = 0, 1 here corresponds toε = +,− in [5]. These intertwiners are unique up
to a normalization, which is fixed by the requirements

〈31|81(ζ )|30〉 = 1, 〈30|80(ζ )|31〉 = 1,

〈31|9∗0(ζ )|30〉 = 1, 〈30|9∗1(ζ )|31〉 = 1.

Here we use the bra–ket notation, identifyingv3i = |3i〉.

3.3. General intertwiners

The existence and uniqueness ofU ′ intertwiners of the form

8(n)(ζ ) : V (n)ζ ⊗ V (3i) −→ V (31−i )⊗ V (n+1)
ζ

was demonstrated in [7]. Our construction differs from that of [7] only in that we use the
principal evaluation representation. Following [7], we construct8(n)(ζ ) in terms of the
intertwinerO(n) : V (1)ξ1

⊗ · · · ⊗ V (1)ξn
⊗ V (3i) −→ V (31−i )⊗ V (1)ζ1

⊗ · · · ⊗ V (1)ζn+1
defined by

O(n) = 1

f (n)
8(ζ1) · · ·8(ζn+1)9

∗(ξ1) · · ·9∗(ξn),
where

f (n) =
∏
a

(−q3ξ2
a )
(n+1−a)/2∏

b

(−q3ζ 2
b )
(1−b)/2 ∏

a<a′

((ξa′/ξa)
2; q4)∞

(q2(ξa′/ξa)2; q4)∞

×
∏
b<b′

(q2(ζb′/ζb)
2; q4)∞

(q4(ζb′/ζb)2; q4)∞

∏
a,b

(q3(ξa/ζb)
2; q4)∞

(q(ξa/ζb)2; q4)∞
.

Here we adopt the convention thata ∈ {1, . . . , n} andb ∈ {1, . . . , n+1}. We define8(n)(ζ )

by

8(n)(ζ ) = (1⊗ π(n+1))O(n)(ι(n) ⊗ 1)|S , (3.8)

whereS is the one-dimensional submanifold in the parameter space of{ξa, ζb}:
S = {ξa = q− n+1

2 +aζ ; ζb = q n+2
2 −bζ }.

As we show in the appendix, each component ofO(n) has poles atS. However, the
combination(1⊗ π(n+1))O(n)(ι(n) ⊗ 1) is free of poles onS.

Let U ′i (i = 0, 1) be theU ′ subalgebra generated byei, fi and ti , and define

π
(n+1)
i : V (1)ζ1

⊗ · · · ⊗ V (1)ζn+1
→ V

(n+1)
ζ ,

ι
(n)
i : V (n)ζ → V

(1)
ξ1
⊗ · · · ⊗ V (1)ξn
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to be the uniqueU ′i intertwiners normalized by

π
(n+1)
i (u

(1)
0 ⊗ · · · ⊗ u(1)0 ) = u(n+1)

0 ,

ι
(n)
i (u

(n)

0 ) = u(1)0 ⊗ · · · ⊗ u(1)0 .

In order to prove that8(n)(ζ ) defined by (3.8) is aU ′ intertwiner, it is enough to show
that

8(n)(ζ ) = (1⊗ π(n+1)
i )O(n)(ι

(n)
i ⊗ 1)|S . (3.9)

The restriction toS in (3.9) is regular, and so the right-hand side of (3.9) is aU ′i intertwiner.
In the appendix, we show that if we divide the restriction toS into the two steps

Step 1:ξa = q 1
2 ζn+2−a (16 a 6 n),

Step 2:ζb = q n+2
2 −bζ (16 b 6 n+ 1),

then each component ofO(n) is regular. The coefficients of the components in the linear
combinations (3.9) (for bothi = 0 andi = 1) and (3.8) coincide onS. 8(n)(ζ ) is therefore
an intertwiner for bothU ′0 andU ′1. This is a simple proof that8(n)(ζ ) is aU ′ intertwiner.

Define components by

8(n)(ζ )(u
(n)
l ⊗ v) =

n+1∑
k=0

(8
(n)
l,k (ζ )v ⊗ u(n+1)

k ). (3.10)

The normalization of (3.8) is such that

〈31|8(n)

n,n+1(ζ )|30〉 = 1, 〈30|8(n)

0,0(ζ )|31〉 = 1.

The intertwiner8(n)(ζ ) has the following properties, analogous to those of the
elementary intertwiner8(ζ) given in [5] (indeed we can identify8(ζ) = 8(0)(ζ )):

g(n)
n+1∑
k=0

8
(n)
l1,k
(−q−1ζ )8

(n)

n−l2,n+1−k(ζ ) = δl1,l2, (3.11)∑
l′,k′

R(1,n+1)(ζ/ξ)
l′,k′
l1,k
8l′(ζ )8

(n)
l2,k′(ξ) = 8

(n)
l2,k
(ξ)8l1(ζ ), (3.12)∑

l′,k′
9∗k′(ξ)8

(n)
l′,k1
(ζ )R(n,1)(ζ/ξ)

l,k2
l′,k′ = 8(n)

l,k1
(ζ )9∗k2

(ξ), (3.13)

ξ−D8(n)
l,k (ζ )ξ

D = 8(n)
l,k (ζ/ξ), (3.14)

where

g(n) = (q2+2n; q4)∞
(q4+2n; q4)∞

.

In (3.14),D is the principal grading, which acts onV (3j ) as

D(fi1fi2 . . . fiN v3j ) = N(fi1fi2 . . . fiN v3j ).
Relation (3.14) is a simple consequence of the analogous property for8(ζ) and9∗(ζ ) (see
[5]). Properties (3.11)–(3.13) can be derived by slightly modifying the proof of theorem 5
in [7]. We give a proof only of (3.11).

We use the following intertwiner:

R̄(n)(ζ1, . . . , ζn) : V (1)ζ1
⊗ · · · ⊗ V (1)ζn

→ V
(1)
ζn
⊗ · · · ⊗ V (1)ζ1

,

R̄(n)(ζ1, . . . , ζn)(u
(1)
0 ⊗ · · · ⊗ u(1)0 ) = u(1)0 ⊗ · · · ⊗ u(1)0 ,

(3.15)
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and abbreviateR̄(n+1)(ζ1, . . . , ζn+1) to Rζ , and R̄(n)(ξ1, . . . , ξn) to Rξ . We denote the
restriction to{ζb = q n+2

2 −bζ } by |ζ , and{ξa = q− n+1
2 +aζ } by |ξ . We write the duality map

as

C(n) : V (n)−q−1ζ
⊗ V (n)ζ → C,

C(n)(u
(n)
l ⊗ u(n)n−l) = 1.

Then we have

(C(1))n+1(1⊗ Rζ )|ζ = C(n+1)(π(n+1) ⊗ π(n+1)), (3.16)

(C(1))n(ι(n) ⊗ Rξ ι(n))|ξ = C(n). (3.17)

The following properties of elementary intertwiners are also known [5]:

g(0)C(1)8(−q−1ζ )8(ζ ) = id, (3.18)

lim
ξ1→−q−1ξ2

(1− q−2ξ2
2/ξ

2
1 )9

∗(ξ1)9
∗(ξ2) = g(0)C(1). (3.19)

The proof of (3.11) proceeds as follows: In the notation of the appendix, the essential
part of the left-hand side of (3.11) is(
8(ζ ′1) . . . 8(ζ

′
n+1)9

∗(ξ ′1) . . . 9∗(ξ ′n)
)
×
(
8(ζ1) . . . 8(ζn+1)9∗(ξ1) . . . 9∗(ξn)

)
. (3.20)

To get (3.11) we compose this withC(n+1)(π(n+1)⊗π(n+1)) andι(n)⊗ ι(n), and then restrict
it to S and{ξ ′a = q−

n+1
2 +aζ ′; ζ ′b = q

n+2
2 −bζ ′}, and finally toζ ′ = −q−1ζ . Let us denote this

restriction by|restrict. Consider the product of operators

8(ζ ′1) . . . 8(ζ
′
n+1)9

∗(ξ ′1) . . . 9∗(ξ ′n)8(ζ1) . . . 8(ζn+1)9∗(ξ1) . . . 9∗(ξn)

= 8(ζ ′1) . . . 8(ζ ′n+1)8(ζ1) . . . 8(ζn+1)9∗(ξ ′1) . . . 9∗(ξ ′n)9∗(ξ1) . . . 9∗(ξn).
(3.21)

The two expressions (3.20) and (3.21) are equal up to a factor which is regular when we
restrict in the way explained above. Therefore, we can manipulate

C(n+1)(π(n+1) ⊗ π(n+1))

×8(ζ ′1) . . . 8(ζ ′n+1)8(ζ1) . . . 8(ζn+1)9∗(ξ ′1) . . . 9∗(ξ ′n)9∗(ξ1) . . . 9∗(ξn)

×(ι(n) ⊗ ι(n))|restrict

instead of the expression containing (3.20). Using (3.15) and (3.16), we reduce this
expression to

(C(1))n+18(ζ ′1) . . . 8(ζ
′
n+1)8(ζn+1) . . . 8(ζ1)9∗(ξ ′1) . . . 9∗(ξ ′n)9∗(ξn) . . . 9∗(ξ1)

×(ι(n) ⊗ Rξ ι(n))|restrict.

Removing the bar, using (3.18), (3.19) and (3.17), and calculating the restriction of the
contraction terms, we arrive at (3.11).

4. The monodromy matrices

In section 2, the results of perturbation theory and other considerations led us to define
the monodromy matrix asT (n+1)

l,l′ (ζ ) = g(n)
∑n+1

k=08
(n)
l,k (ζ ) ⊗ 8(n)t

n−l′,n+1−k(ζ ). In section 3,
following Nakayashiki, we defined8(n)(ζ ) and presented its properties (3.11)–(3.14). We
now use these results in order to derive certain properties ofT (n+1)(ζ ).
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4.1. Action onF

One can viewF = H ⊗ H∗ as a linear map onH via the canonical identification
H∗ ⊗H ' End(H). Then the action ofT (n+1)

l,l′ (ζ ) on f ∈ End(H) is given by

T
(n+1)
l,l′ (ζ )f = g(n)

n+1∑
k=0

8
(n)
l,k (ζ ) ◦ f ◦8(n)

n−l′,n+1−k(ζ ).

As an element of End(H), the vacuum in theith sector was identified in [5] as

|vac〉(i) = χ− 1
2 (−q)D(i)

P (i),

whereP (i) is the projectorH→ V (3i), andχ = 1/(q2; q4)∞ is the principally specialized
character ofV (3i). The superscript on the gradingD serves only to indicate on which
spaceV (3i) it acts (we suppress the appearance of the projector from now on).

The action ofT (n+1)
l,l′ (ζ ) is given by

T
(n+1)
l,l′ (ζ )|vac〉(i) = χ− 1

2g(n)
n+1∑
k=0

8
(n)
l,k (ζ )(−q)D

(i)

8
(n)

n−l′,n+1−k(ζ ),

= χ− 1
2 (−q)D(1−i)

g(n)
n+1∑
k=0

8
(n)
l,k (−q−1ζ )8

(n)

n−l′,n+1−k(ζ ),

= δl,l′χ− 1
2 (−q)D(1−i) = δl,l′ |vac〉(1−i).

Here we have used properties (3.14) and (3.11).
The Hamiltonian of theXXZ model is given by

H = (1− q2)

2q
ζ

d

dζ
T (1)(ζ )|ζ=1.

Excited states are given by

|ξ1, . . . , ξm〉ε1,...,εm;(i) = (g(0))−m/2χ−
1
29∗ε1

(ξ1) . . . 9
∗
εm
(ξ1)(−q)D(i)

with |ξi | = 1 (see [5]). Using the commutation relation (3.13), it is easy to show that the
action ofT (n+1)

l,l′ (ζ ) on the ‘m-particle state’|ξ1, . . . , ξm〉ε1,...,εm;(i) is given by

T
(n+1)
l,l′ (ζ )|ξ1, . . . , ξm〉ε1,...,εm;(i) =

∑
{ε′i ,li }

R(n,1)(ζ/ξ1)
l,ε1

l1,ε
′
1

×R(n,1)(ζ/ξ2)
l1,ε2

l2,ε
′
2
. . . R(n,1)(ζ/ξm)

lm−1,εm
l′,ε′m

|ξ1, . . . , ξm〉ε′1,...,ε′m;(1−i). (4.1)

Here the sum is overε′1, . . . , ε
′
m and l1, . . . , lm−1. If we represent theR-matrix graphically

as in [5], then this action has the following rather simple representation:

This picture is related to the space of particles and not to the coordinate lattice. Forn = 0,
we haveT (1)(ζ )|ξ1, . . . , ξm〉ε1,...,εm;(i) = τ(ζ/ξ1) . . . τ (ζ/ξm)|ξ1, . . . , ξm〉ε1,...,εm;(1−i) as in [5],
where

τ(ζ ) = ζ−1 (qζ
2; q4)∞(q3ζ−2; q4)∞

(qζ−2; q4)∞(q3ζ 2; q4)∞
.
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4.2. Commutation relations

Making use of the explicit form of the action onF given by (4.1), and the Yang–Baxter
equation (3.3), we can immediately write down the commutation relationships ofT

(n)
l,l′ (ζ ).∑

l̄1,l̄2

R̄(n,m)(ζ1/ζ2)
l1,l2

l̄1,l̄2
T
(m+1)
l̄2,l
′
2
(ζ2)T

(n+1)
l̄1,l
′
1
(ζ1) =

∑
l̄1,l̄2

T
(n+1)
l1,l̄1

(ζ1)T
(m+1)
l2,l̄2

(ζ2)R̄
(n,m)(ζ1/ζ2)

l̄1,l̄2
l′1,l
′
2
,

[T (n)(ζ1), T
(1)(ζ2)] = 0,

wheren,m > 1. ThusT (2)l,l′ (ζ ) can be interpreted as theL-operator of the spin-12 XXZ
model in the infinite volume limit.

4.3. Fusion

If we rewrite each of theR(n,1)(ζ ) that occur on the right-hand side of (4.1) using the
fusion expression (3.4), then we obtain a fusion relation forT (n+1)(ζ ) in terms ofT (2)(ζ )
andT (1)(ζ ).

Consider the operatorF which counts the number of particles in the particle picture.
Define

T̄ (n+1)(ζ ) =


T (n+1)(ζ )T (1)(ζ )−1 if n ≡ 0 mod 4

T (n+1)(ζ ) if n ≡ 1 mod 4

T (n+1)(ζ )T (1)(ζ ) if n ≡ 2 mod 4

(−1)F T (n+1)(ζ ) if n ≡ 3 mod 4.

(4.2)

We note that there is an equalitȳT (n+1)(ζ ) = T (n+1)(ζ )
∏n−2
a=0 T

(1)(q
n−2

2 −aζ ). Then, we have
the following fusion relation:

T̄
(n+1)
l,l′ (ζ ) = γ

(n)
l′

γ
(n)
l

∑
l′1+···+l′n=l′

T
(2)
l1,l
′
1
(ζq

n−1
2 )T

(2)
l2,l
′
2
(ζq

n−3
2 ) . . . T

(2)
ln,l′n
(ζq

1−n
2 ),

wheren > 1. Here, thela are specified only by the requirementl1 + · · · + ln = l; the
formula is independent of the actual choice ofla.

5. Discussion

In this paper, we have studied theUq(ŝl2) symmetry of the spin-12 XXZ model in the
massive regime by making use of Nakayashiki’s intertwiners. We have conjectured that in
the infinite volume limit the half transfer matrix with spin-1

2 quantum space and spin-( n+1
2 )

auxiliary space is represented by the intertwiner

8(n)(ζ ) : V (n)ζ ⊗ V (3i)→ V (31−i ⊗ V (n+1)
ζ ). (5.1)

This implies, in particular, that the monodromy matrix with spin-1 auxiliary space enjoys
the commutation relations of theL-operator.

In [7], Nakayashiki uses the operator8(n)(ζ ) to diagonalize the spin-1
2 XXZ model

with higher spin impurities. In the language of the six-vertex model, this is equivalent to
inserting lines with higher spin. The difference between our approach and Nakayashiki’s
is that we consider the monodromy matrices which are parallel to the inserted lines, while
Nakayashiki considers the transfer matrix which is perpendicular to them. In Nakayashiki’s
case the spaceV (n)ζ in (5.1) corresponds to the degeneracy of the vacuum states of the
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transfer matrix. In our case, we have found that the same space corresponds to the boundary
conditions for the monodromy matrices.

We have derived the fusion relation for the monodromy matrices. It almost corresponds
to the fusion construction of the spaceV (n)ζ in (5.1) out of the spaces withn = 1. However,
we have found that the monodromy matrices contain the correction factor given in (4.2),
which is diagonal in each irreduciblem particle representation in the physical space of
states.
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Appendix. Regularity of matrix elements

In this appendix, we prove a few statements concerning the regularity of the matrix elements
of the product of type-I and type-II vertex operators. We start from the bosonization of
vertex operators given on p 140 of [5]. Consider the product of vertex operators

O = 8k1(ζ1) . . . 8km(ζm)9
∗
l1
(ξ1) . . . 9

∗
ln
(ξn).

It contains integrals with respect to the variableswb̄ in X−(wb̄), for b̄ such thatkb̄ = 0, and
uā in X+(uā), for ā such thatlā = 0.

After normal ordering, the integrand, which depends on the variablesζb, ξa, wb̄ anduā,
consists of the following three parts:

(i) O1, the contraction terms, pairwise in8181, 819
∗
1, 9∗181 or 9∗19

∗
1.

We have

O1 =
∏
b<b′

(−q3ζ 2
b )

1
2
(q2ζ 2

b′/ζ
2
b ; q4)∞

(q4ζ 2
b′/ζ

2
b ; q4)∞

∏
a<a′

(−q3ξ2
b )

1
2
(ξ2
a′/ξ

2
a ; q4)∞

(q2ξ2
a′/ξ

2
a ; q4)∞

×
∏
a,b

(−q3ζ 2
b )
− 1

2
(q3ξ2

a /ζ
2
b ; q4)∞

(qξ2
a /ζ

2
b ; q4)∞

.

This is a function ofζb, ξa. In the above setting, pairs of the form9∗181 do not appear
because81 is always in the left of9∗1;

(ii) O2, the contraction terms for the rest of the pairs.
We have∏

b̄<b̄′
(wb̄ − wb̄′)(wb̄ − q2wb̄′)

∏
ā<ā′

(uā − uā′)(uā − q−2uā′)

×
∏
ā,b̄

1

(wb̄ − quā)(wb̄ − q−1uā)

∏
ā,b

(uā − q3ζb)
∏
a,b̄

(wb̄ − q3ξa)

×
∏
a6ā

q

uā − q4ξ2
a

∏
ā6a

1

uā − q2ξ2
a

∏
b6b̄

1

q(wb̄ − q2ζ 2
b )

∏
b̄6b

1

wb̄ − q4ζ 2
b

.
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(iii) O3, the rest, which is a normal-ordered product of vertex operators with coefficients
that are Laurent polynomials inζb, ξa, wb̄ anduā.

The contours for the integrals are such that theq4ζ 2
b , quā, q−1uā are inside, and the

q2ζ 2
b are outside of the contour for thewb̄ integration; theq2ξ2

a are inside, and theq4ξ2
a ,

qwb̄, q
−1wb̄ are outside of the contour for theuā integration.

Denote the quantity which isO with O1 removed, byO. Note that because of the
commutation relation (A.3) of [5],8lb(ζb) commutes with9∗ka (ξa) inside ofO.

Now let us examine the regularity of the matrix elements ofO. It is enough to consider
theO2 term in the integrand. The possible pinchings of the contours occur in the following
four cases (which we list with the relevant factors in the integrand):

Case 1.
1

(uā − q4ξ2
a1
)(uā − q2ξ2

a2
)

at ξ2
a1
= q−2ξ2

a2
, for a1 6 ā 6 a2,

Case 2.
1

(wb̄ − q2ζ 2
b1
)(wb̄ − q4ζ 2

b2
)

at ζ 2
b1
= q2ζ 2

b2
, for b1 6 b̄ 6 b2,

Case 3.

wb̄ − q3ξ2
a

(wb̄ − q2ζ 2
b )(wb̄ − quā)(uā − q2ξ2

a )
at ζ 2

b1
= qξ2

a , for b 6 b̄, ā 6 a,

Case 4.

uā − q3ζ 2
b

(wb̄ − q2ζ 2
b )(wb̄ − q−1uā)(uā − q2ξ2

a )
at ζ 2

b1
= q−1ξ2

a , for b 6 b̄, ā 6 a.

Cases 1 and 2 give rise to poles. They are, at most, simple because of the factor∏
ā<ā′(uā − uā′) or

∏
b̄<b̄′(wb̄ − wb̄′), respectively. Cases 3 and 4 are pole free because of

the factorwb̄ − q3ξ2
a or uā − q3ζ 2

b , respectively. The final remark is that the restriction of
O at qζ 2

b = ξ2
a2

for anyb is regular atξ2
a1
= q−2ξ2

a2
, and the restriction atqζ 2

b2
= ξ2

a for any
a is regular atζ 2

b1
= q2ζ 2

b2
. This is because of the following factors in the numerator:

uā − q3ζ 2
b = (uā − q2ξ2

a2
)+ q2(ξ2

a2
− qζ 2

b )

wb̄ − q3ξ2
a = (wb̄ − q4ζ 2

b2
)+ q3(qζ 2

b2
− ξ2

a ).
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